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Abstract-in recent years, morphometric data for Venus and several outer planet satellites have been collected,

so we now have observational data of complex craters formed in a large range of target properties. We pre-

sent general inversion techniques that can utilize the morphometric data to quantitatively test various models

of complex crater formation. The morphometric data we use in this paper are depth of a complex crater, the

diameter at which the depth-diameter ratio changes, and onset diameters for central peaks, terraces, and peak

rings. We tested the roles of impactor velocities and hydrostatic pressure vs. crustal strength, and we tested

the specific models of acoustic fluidization (Melosh, 1982) and nonproportional growth (Schultz, 1988).
Neither the acoustic fluidization model nor the nonproportional growth in their published formulations are able

to successfully reproduce the data. No dependence on impactor velocity is evident from our inversions. Most

of the morphometric data is consistent with a linear dependence on the ratio of crustal strength to hydrostatic

pressure on a planet, or the factor c/pg.

INTRODUCTION

Crater morphometry, the quantitative description of the shape of

impact craters, has always played a key role in understanding the cra-

tering process. One of the key arguments used to support the impact

origin of lunar craters was that they were morphometrically similar

to terrestrial explosion craters (Baldwin, 1949). Complex impact cra-

ters, craters with such features as a flat floor, a central peak, and wall

terraces, have never been created in common geologic materials in the

lab or with large explosions. At present, only the morpbometry of im-

pact craters on the solid bodies of the solar system can provide data

on how various target and impactor properties affect complex crater

formation. Until recently, morphometric data for fresh complex cra-

ters existed only for the Moon, Mars, and Mercury (e.g., Hale and

Head, 1979, 1980, 1981; Malin and Dzurisin, 1978; Pike, 1977,

1980a, 1988; Pike and Spudis, 1987; Smith and Hartnell, 1978;

Wood, 1980; Wood and Andersson, 1978). Unfortunately, these

bodies provide data for a fairly limited range of target properties. As a

consequence, past attempts at explaining interplanetary differences in

craters have necessarily been limited to a forward-modeling approach,

where a model is considered adequate if it fits the data within error

tolerances. A well-known example of this approach is Pike's (1980a,

1988) demonstration that a line with slope 1/g, where g is surface

gravitational acceleration, fits within error bars the simple-to-com-

plex transition diameter for the Moon, Mercury, Mars, and Earth.

The recent addition of crater morphometric data for Venus (Her-

rick and Phillips, 1994; Sharpton, 1994; Alexopoulus and McKinnon,

1994; Herrick et at., 1996) and the icy satellites (Schenk, 1989, 1991)

greatly extends the range of surface gravities and target compositions

for which data exist. This additional data makes the inverse approach

a feasible method for determining the factors controlling interplane-

tary differences in crater morphometry and for evaluating various

complex-crater formation models. In the inverse approach, a gener-

al model is presented and the data are used to invert for any unknown

parameters in the model. Standard inversion techniques provide a

structured framework for comparing models, incorporating data

with errors, and determining ranges of acceptable parameters. Our

purpose in this paper is twotbld. We will attempt to demonstrate the

advantages of the inverse method tbr making quantitative evalua-

tions of models of the cratering process. In the process, we will test

some general concepts regarding the effects of projectile velocity, tar-

get surface gravity, and crustal strength on complex-crater formation,

and we will test two previously proposed models.

INVERSION TECHNIQUES

To illustrate what types of data are necessary, what kinds of

models can be tested, and what can be learned about each model,

here we briefly review some of the key aspects of linear and non-

linear inversion techniques (excellent, more detailed reviews are in

Menke, 1989 and Lines and Treitel, 1984). The first step in using

inversion techniques to evaluate a model for some aspect of the cra-

tering process is to quantify the model so that it predicts a set of

measurable quantities, i.e., measurement di is a function of some set

of properties such as surface gravity and impactor velocity. Thus,

there is a set of measured data points, listed as a vector d, that are

presumed to be dependent on some unknown set of model param-

eters, m. In a general sense, this functional dependence can be ex-

pressed as f(d,m) = 0. All of the techniques discussed in this paper

require that this functional dependence must be expressed in a way

that separates model from data, so that

d = g(m) Eq. (1)

where g is a vector function. It is easiest to work with linear vector

functions, so that d is just m multiplied by some matrix G, or

d = Gm Eq. (2)

As we demonstrate in the specific examples later in the paper, in

some cases nonlinear g can be made linear through a change in vari-

able, working in log-log space, or some other mathematical tech-

nique. If the model and data can be put into the linear form, then

generally the goal from there is to estimate m from d; in other

words, invert Eq. (2) so that m is isolated.

We can begin the model evaluation by looking at the matrix G.

If G is such that every different m produces a unique d and every

possible d can be produced by some choice of m, then the model we
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havechosenisexactlydetermined.Forexample,exactlyonelinecan
alwaysbefitthroughanytwopoints.Inthiscase,Gwouldbesquare
andinvertiblemathematically.Fortheexactlydeterminedmodel,it
isaforegoneconclusionthatthedatacanbeexactlyproducedbya
particularchoiceofmodelparameters,andtheonlymeansofevalu-
atingthemodeliswhetherthosemodelparametersandthemodelit-
selfmakesense.Considerasanexampleamodelwheretheonset
diameterofcentralpeakcratersisaplanet'sgravitymultipliedbyan
arbitraryconstantthatisdifferentforeachplanet.Obviously,anar-
bitraryconstantcanbechosenforeachplanetsothatthedataare
alwaysexactlyfit;butunlessthereissomephysicalbasisforthear-
bitraryconstant,itsvalueandthemodelareessentiallymeaningless.
Anexactlydeterminedmodelcanbethoughtofastransferringthe
datavaluesintoadifferentsetofunits.

lfG issuchthatmanydifferentmcanproducethesamed,then
theinversionformissaidtobeunderdetermined.Forexample,an
infinitenumberoflinescanbefit throughasinglepoint.Fortheun-
derdeterminedcase,evaluationofthemodelmustbeessentiallyin-
dependentofthedata.Forexample,if projectilemass,velocity,and
impactangleareinputsintoamodelthatpredictsthevolumeofmelt
foraparticularcrater,thencreatingvaluesformass,velocity,and
impactangleforanincomingmeteoroidthatresultinamatchtothe
estimatedmeltvolumesaysnothingaboutthevalidityofthemodel
beingused.Insimpleproblems,theunderdeterminedcaseoccurs
whenGhasmorecolumnsthanrows,ormhasmoreelementsthand.
Insummary,thevalidityofthemodelcannotbeassessedwithinver-
siontechniquesfortheunderdeterminedandexactlydeterminedcases.

However,if Gissuchthatonlyasubsetofpossibled'scanbe
producedbyallchoicesofm,thenthemodelisconsideredoverdeter-
mined.Forexample,ofallpossiblesetsofthreepoints,onlycertain
subsetscanbefit bytheequationofa line.Intheoverdetermined
case,theinversionprovidessomemeansoftestingthemodel.A
model can be ruled out as invalid if a set of model parameters can-

not be found that satisfactorily reproduces the observed set of data.

The nature of the inversion is in part based on what criteria define a

satisfactory reproduction of the data. In this paper, we seek solutions

that minimize the square of the difference between the model results

and the data. This is known as a least-squares inversion. In a simple

least-squares inversion, the model parameters that best reproduce

the data are of the form (Menke, 1989)

mes t = [GTG]-IGTd Eq. (3)

Equation (3) gives equal value to each data point; however, it may

be decided that it is more important to fit certain data points than

others. In this case, the data can be weighted in the inversion so that

mes I = [GTWG]-IGTWd Eq. (4)

where W is a square diagonal matrix of weighting values for each

data point. In this paper, we will weight the data by the inverse of its

standard deviation, so that data points known with the smallest amount

of error are weighted most heavily.

Equation (4) and many other linear inversion formulae have the

form rues t = Md, where M is the inversion matrix. If the data are in-

dependent of each other so that their covariance is a diagonal matrix

V where each diagonal element is 02 , the variance of a data point,

then an estimate of the model parameter variance is

V m = MVM T Eq. (5)

An a priori estimate of the model parameters <m> can be given

weight in the inversion so that the output model parameters are

reasonably close to this initial estimate. Combining weighting of the a

priori estimate with the weighted least-squares inversion gives

me.,t = <m> + [GTWG + E2Wm]-IGTW[d - G<m>] Eq. (6)

where W m is a square diagonal matrix individually weighting each

model parameter and _2 provides relative weighting between the data

and the apriori estimate. Equation (6) can be used to address the non-

linear case where the problem can be defined in terms of Eq. (1) but

not Eq. (2). If the functions in Eq. (1) vary smoothly, then each func-

tion can be expanded as a Taylor series where we ignore second and

higher order terms, so that

di _ gi (m O) + a_g_io(m j - m° ) Eq. (7)
emj

where m ° is some initial estimate of a model parameter that the Tay-

lor series is expanded about. In matrix form, this becomes

d = G <m> + G'(m-<m>) Eq. (8)

where G' is the matrix of partial derivatives. Setting Ad = d - G<m>

and Am = m - <m>, and utilizing Eq. (6), it is possible to create an

iterative method for solving for the best possible estimate of m. In

this method, known as the Marquardt-Levenberg method (Levenberg,

1944; Marquardt, 1963), a previous estimate of m and its model

output are used for <m> and G<m> and the matrix of derivatives is

used in the inversion, so that the next estimate can be calculated as

Am = [G'TWG' + fl]-I G,TWAd Eq. (9)

The damping factor fl generally reduces the step size to stabilize the

inversion. Typically iterations are continued until the step size falls

below a specified value.

Once the model parameters are estimated, one way to evaluate

the model is to compare the prediction error, the difference between

model results and the data, with the standard deviation o of the data.

Comparison of different models designed to reproduce the same data

must take into account the fact that the model with more parameters

has an inherent advantage in reproducing the data. This comparison

can be performed with the F test (Menke, 1989). The F value is the

ratio of Z_ for each model, where

N 2
)_2v 1/vZei, true= /¢Ydi ;v = N - M Eq. (10)

i=1

e is prediction error, N is the number of data points, M is the number

of model parameters, and v is the number of degrees of freedom.

Note that Z_ becomes smaller with lower prediction errors but

larger with more model parameters. The ratio,

2 2
F = Z;,_/Zv 2 Eq. (11)

can be compared with standard statistical tables to determine wheth-

er a significant difference exists between the two models.

HYDROSTATIC PRESSURE VERSUS STRENGTH

A particularly illustrative example of the inversion technique is

to test the role of hydrostatic pressure in the complex crater forma-

tion process. Many conceptual models of complex crater formation

envision collapse of a parabolic transient cavity when the hydro-

static pressure at the cavity's base exceeds some measure of rock

strength (e.g., Hartmann, 1972; Melosh, 1977, 1982; Grieve et aL,

1981). If proportional growth is assumed so that the depth/diameter
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ratioofatransientcavityisinvariant in all cases, then the crater diam-

eter for collapse will depend on the factor c/pg, where p is surface

density, g is surface gravitational acceleration, and c is some measure

of crustal strength. For the terrestrial planets, the crustal strength and

density are thought to be similar, leading to inverse gravity scaling or

a dependence on the factor 1/g. In particular, Pike (1980a, 1988) was

able to show that a wide variety of collapse features (e.g., inflection

of depth-diameter data, central peak onset, peak ring onset) on the

Moon, Mercury, Mars, and Earth can be fit with a line of I/g slope.

Since that work, the equivalent morphological data has been collected

for Venus and several icy satellites, and this greatly expands the range

of available data for all three variables in the factor c/pg. This addi-

tional data also makes it feasible to use the inversion approach to

test the importance of the factor c/pg in the complex cratering pro-

cess. A qualitative, forward-modeling approach to this test was taken

in Herrick and Phillips (1994), and a preliminary inversion was per-

formed in Herrick et al. (1996).

To test the importance of the factor c/pg, we assume that all

interplanetary differences in crater morphometry are directly con-

trolled by this factor. If the range of values assumed by this factor is

small enough, then any dependence can be approximated by an ex-

ponential function

Ol, = A,I_ Eq. (12)

where Oji is an observation of type i for planet j, and A and b are
constants. In log-log space this becomes

(log 0)i i = (logA)i + bi(iog c!z-b_{iogog!i Eq. (13)

and a series of equations in the form of Eq. (1) exists. Ifb is held con-

stant, then the inversion is linear and Eq. (4) is used for the inversion;

but if b is allowed to vary, then the nonlinear form of Eq. (9) must be

used. In this paper, we show results from both cases.

The particular measurements we used are the following: com-

plex crater depth, the inflection point of the depth-diameter curve,

diameter of central peak onset, diameter of peak ring onset, and diam-

eter of terracing onset. Complex crater depths are functions for each

planet rather than the single value necessary for Eq. (12). Therefore,

we used the depth of a 30 km diameter crater, a diameter at which

craters on all the planets considered are central-peak craters. There
are at least three distinct measurements that could be considered the

onset diameter: the diameter of the smallest crater with a particular

feature, the diameter of the largest crater without a feature, and the

median diameter, where there are as many craters below the median
diameter with the feature as there are craters above the median

without the feature. We refer to these measurements as the minimum,

maximum, and median onset diameters, respectively. Which type of

measurement should be used is dependent on both the particulars of

a model and subjective evaluation of the data. For example, one

could take the position that the median diameter is most representa-

tive of what would occur on an ideal planet and that the spread about

this value represents natural scatter. In this case, the median value

would be most appropriate, but the scatter should be similar on all

the bodies so any of the three measurement types would be okay.

From a different point of view, one might consider, for example, the

minimum onset of central peaks to be the true onset diameter, and

larger craters without central peaks have had their peaks covered by

later crater infilling. Obviously other scenarios can be constructed.

Table ! shows the values we used in our various analyses along

with the appropriate references. The surface gravities (m s 2) of the

planets for which data were collected for this study are: Venus, 8.87;

Mercury, 3.78; Mars, 3.72; Moon, 1.62; Ganymede, 1.43; Titania,

0.372; Rhea, 0.285; Ariel, 0.251; Dione, 0.224; and Mimas, 0.079.

We attempted to maximize the chance of comparing apples with ap-

ples by generally using data for fresh craters occurring in a single,

hopefully nonlayered terrain type. For example on the Moon, fresh

highlands craters were used and on Venus, fresh craters on the vol-

canic plains were used. Also, crater fields, crater chains, highly

oblique impacts, and other oddities were not included in the data

used. Because terrestrial morphological data is both scant and must

be reconstructed with an implicit model from a heavily eroded

surface, we have chosen not to use any terrestrial data in our study.

As stated above, an inversion can be weighted by the error in the

data. Calculating errors for the depth measurements and the in-

flection point of the depth-diameter curve is a standard statistical

problem, and in many cases the error values are given in the stated

references. However, determining error bars for the onset of a fea-

ture is not as straightforward. To estimate the error, we first assume

that our crater data set is a typical sampling of a hypothetical data

set containing an infinite number of craters. Our sample set of mea-

surements contains N craters, where N is the number of craters with

a feature and below the median diameter plus those craters without a

feature and above the median diameter. An infinite number of sam-

pled data sets of our fictitious infinite crater set should have a nor-
mal distribution of median values. If we assume that our observed

data is a typical sampling of the hypothetical crater population of

infinite size, then the 1o error bounds for the median value can be

estimated by taking the difference of the two data values ,f-ff sam-

ples away from the median. Using a similar logic for minimum and

maximum onset diameters, the let error is defined by taking the
difference of the observed value's diameter and the diameter for sam-

ple i away from observed value such that

I - > 0.68 Eq. (14)

For example, consider the observed data for Venus regarding the on-

set of central peaks. Figure 1 shows the data between the minimum-

sized crater with a central peak and the maximum-sized crater without

one. One hundred ninety-seven craters fall between the minimum-

sized crater with a central peak, at 8.6 km diameter, and the maximum-

sized crater without a central peak, 22.6 km in diameter. There are

27 craters above 14.8 km diameter without a central peak and 27

craters below 14.8 km with a central peak, making 14.8 km (I.17 in

log space) the median diameter and N equal to 54. Counting eight

samples each way (rounding up from _ ) gives an error for the

median in log space of 0.5 (log 15.7 - log 13.5), or 0.033. With N =

54, i must equal 2 for Eq. (14) to hold. Counting two samples

away, the error for the maximum is (log 22.6 - log 20.5) = 0.042

and for the minimum is (log 9.6 - log 8.6) = 0.048. If a reference in

Table i did not provide error estimates or the data necessary to esti-

mate errors, for the purposes of the inversion we assumed an error

in log-log space of 0.1, or -25%.

We performed a series of linear inversions with b fixed at one

unless otherwise stated. A target density of 3000 kg m 3 was as-

sumed for the terrestrial planets and moons and 1000 kg m -3 for the

icy satellites. For the first inversion, we simply tried to fit all of the

data: rim-floor depth of a 30 km crater, the inflection point in the

depth-diameter curve, and all three onset diameter measurements for
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TABLE I. Data and model results for inversions involving hydrostatic pressure dependence.

Data expressed as log (km) Model Results
Data Error Reference A B C D E F nlA nlA'

Depth of 30 km crater, Rim-

Floor (RF) orTerrain-Floor (TF) RF

Venus

Mercury

Mars

Moon

Ganymede
Rhea

Ariel

Dione

Mimas

d/D inflection point

Mercury 0.67 0.06 P3

Mars 0.49 0.09 P3

Moon 1.04 0.08 P3

Ganymede 0.68 0. I 0 $2

Rhea 1.09 0. I 1 S 1

Ariel 1.23 0.10 S1

Dione 1.24 0.17 S 1

Mimas 1.20 0.32 SI

Onset of central peaks
Minimum

Venus 0.93 0.05 HP

Mercury 1.09 0.03 P3
Mars 0.52 0.04 P2

Moon 1,26 0.05 SH

Ganymede 0.60 0.10 $2

Ariel 1.00 0.10 S 1

Dione 1.26 0.10 S1

Mimas 1.00 0.10 CM

Median

Venus 1.17 0.03 HP

Mercury 1.18 0.06 P3
Mars 0.78 0.10 P2

Moon 1.43 0.07 SH

Ganymede 0.70 0.10 $2
Rhea 1.18 0.15 CM

Ariel 1.18 0.15 SI

Dione 1.30 0.11 SI

Mimas 1.30 0,10 CM

Maximum

Venus 1.35 0.04 HP

Mercury 1.32 0.03 P3

Mars 1.04 0.10 P2

Moon 1.70 0.05 SH

Ganymede 0.85 0.10 S2
Ariel 1.30 0.10 S1

Dione 1.40 0.10 S1

Mimas 1.54 0.10 CM

Peak ring onset
Minimum

Venus 1.65 0.00 HP

Mercury 1.86 0.08 PS

Mars 1.65 0.10 W

Moon 2.13 0.11 PS

Ganymede 1.34 0.10 $2

Titania 2,13 0.10 $2

Median

Venus 1.82 0.08 HP

Mercury 2.04 0.11 PS
Mars 2.08 0.14 P3

Moon 2.34 0.10 PS

Ganymede 1.60 0.10 $2

TF RF TF RF TF RF RF RF TF RF RF RF RF

0.05 -0.09 0.14 0.18 Sh Se, Sh 0.11 0.22 0.21 0.07 0.19 0,21 0.16 0.21

0.28 0.04 0,04 0.05 P3 P3 0.32 0.30 0,27 0.05 0.31 0.26 0.32 0.31

0,22 0.11 0.07 0.31 P2 PD, P2 -0.08 -0.05 0,12 -0.11 -0,02 -0.00 0.01 0.10

0.47 0.30 0.05 0.08 P2 P1, P2 0.51 0.56 0,51 0.28 0.52 0.58 0.47 0,41

-0.01 -0,16 0.09 0.66 $2 $2 0.06 -0.08 -0.12 -0.04 -0.02 0.12 0,18

0.40 0.20 SI 0.43 0.44 0.45 0.45 0.41 0.37

0.28 0.34 SI 0.46 0.38 0.49 0.48 0,42 0.36

0.40 0,32 0.35 0.48 SI SI, $2 0.44 0.46 0.24 0.46 0.54 0.41 0,37

0,52 0.45 SI 0.38 0.41 0.40 0.50 0.36 0.34

0.87 0.86 0.70 0.77 0.85 0.69 0,87 0.87

0.46 0.52 0.55 0.55 0.52 0.56 0.45 0.46

1.06 1.12 0.94 1.10 1,07 I.I1 1.06 1.06

0.60 0.48 0.53 0.51 0.58 0.60 0.61

0.98 1.00 1.01 0.99 1.04 0.98 0.98

1.00 0.94 1.11 1.03 I. 15 1.00 0.96

0.98 1.02 1.05 1.00 1.13 0.98 0.98

0.92 0.97 0.99 0.95 1.09 0.92 0.92

0.82 0.93

1.04 1.00

0.64 0.66

1.23 1.26

0.77 0.63

1.18 1.09
1.16 1.16

1.10 I.I1

0.89 0.93 0.83 0.83

1,01 1.03 1,04 1,05

0.68 0.63 0.62 0.61

1,22 1,25 1.24 1.25

0.66 0.57 0.77 0.78

1.19 1.00 1.18 1.14

1.16 1.15 1.16 1.16

1.10 1.10 1.10 1.10

1.06 1.12 1.14 1.13 1.I0 1.13 1.06 1,06

1.28 1.20 1.19 1.10 1.22 1.24 1.28 1.28

0.87 0.85 1,05 0,88 0.89 0.83 0.86 0.84

1.47 1.45 1.44 1.43 1.43 t .45 1.47 1.48

1.01 0.82 0.86 0.88 0.77 1.01 1.01

1.39 1.34 1.34 1.36 1.26 1.39 1.39

1.41 1.28 1.44 1.40 1.20 1.41 1.37

1.39 1,36 1,38 1.37 1.35 1.39 1.39

1.33 1.30 1.32 1.31 1,30 1.33 1.33

1,18 1.28

1.39 1,36

0.99 1.01

1.58 1.61

1.13 0.98

1.53 1.44

1.51 1,52

1.45 t .46

1.25 1.28 1.18 1.18

1.37 1.38 1.39 1.39

1.03 0.97 0.97 0.96

1.58 1.59 1.59 1.59

1.02 0.92 1.12 1.12

1.55 1.35 1.52 1.49

1.52 1,49 1.51 1.51

1.46 1.45 1.45 1.45

1.65 1.65

1.87 1.73

1.47 1.39

2.06 1.99

1.60

1.83

1.65 1.65 1.65 1.65

1,77 1.68 1.87 1.88

1.44 1,47 1.44 1.42

1.99 2.04 2.08 2.09

1.43 1.60 1.59

1.78 1.85 1.97

1.85 1.96 1.95 1.99 1,92 1.94 1.85 1.85

2.07 2.04 2.00 1,96 2.04 1.97 2.07 2.08

1.66 1.69 1.86 1,74 1.71 1.76 1.64 1.62

2.26 2.29 2.25 2,28 2,25 2,33 2.27 2.29

1.80 1.69 1.79 1,79
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centralpeaks,peakrings,andterraces.Fortheicysatellites,weused
theonsetofcentralpitcratersasdatafortheonsetofpeakrings,as
someauthors(Melosh,1982;PasseyandShoemaker,1982;Schultz,
1988)haveconsideredcentralpitsandpeakringstobeformedby
similarprocesses.Theformof Eq.(13)issuchthatonlyrelative
strengthsfortheplanetscanbesolvedfor,andwearbitrarilyfixed
thelunarvalueofctobe10(1inlogspace).Toforcethecentral

pitonsetdatatobeoverconstrained,weassignedArielandTitaniathe
samestrengths.Thisinversionhas70datavaluesand20parameters
weareinvertingfor(A'sandc's in Eq. (13)). Tables I and 2 summa-

rize the results for this inversion, which we will call Model A. Some

of the fits of model to data are shown graphically in Fig. 2. This in-

version was surprisingly successful. With the model parameters that

were inverted for, the forward model is able to fit 51 of the 70 data

TABLE 1. Continued.

Data expressed as log (km) Model Results
Data Error Reference A B C D E F nlA nlA'

Maximum

Venus 1.88 0.03 HP 1.87

Ganymede 1.72 0.10 $2 1.82

Terracing onset: D or d at onset D d D d D d D
Minimum

Venus 0.93 -0.12 0.02 0.14 HP HP, Sh 1.04

Mercury 1.26 0.22 0.00 0.04 SH SH, P3 1.26

Mars 0.83 -0.04 0.06 0.07 P2 P2 0.85

Moon 1.20 0.38 0.19 0.05 Stt SH, P2 1.44

Ganymede 1.30 0.09 0.10 0.09 $2 $2 0.99

Median

Venus 1.11 -0.06 0.03 0.14 HP HP, Sh 1.13

Mercury 1.41 0.28 0.10 0.04 SH SIt, P3 1.35
Mars 0.90 -0.02 0.10 0.07 P2 P2 0.94

Moon 1.49 0.46 0.03 0.05 SH SH, P2 1.54

Ganymede 1.60 0.05 0.10 0.09 $2 $2 1.08
Maximum

Venus 1.29 -0.01 0.04 0.14 HP HP, Sh 1.36

Mercury 1.69 0.40 0.23 0.04 SH SH, P3 1.57

Mars 1.04 0.04 0.I0 0.07 P2 P2 1.17

Moon 1.62 0.50 0.21 0.05 SH SH, P2 1.76

Ganymede 1.78 0.12 0.10 0.09 $2 $2 1.31

rms error: data 0.13

rms error: model 0.17

0.14 0.08 0.20

0.13 0.11 0.14

1.88 1.87 1.87

1.66 1.81 1.81

d D D

0.09 1.04 1.04

0.21 1.26 1.26

-0.12 0.83 0.81

0.42 1.46 1.46

-0.14 0.98 0.98

0.16 1.13 1.13

0.28 1.34 1.34

-0.05 0.92 0.90

0.49 1.55 1.55

-0.07 1.07 1.07

0.24 1.36 1.36

0.36 1.58 1.58

0.03 1.15 1.14

0.57 1.78 1.79

0.01 1.30 1.30

0.13 0.14 0.13 0.13

0.14 0.10 0.17 0.17

References: PI = Pike, 1977; P2 = Pike, 1980a; P3 = Pike, 1988; SI = Schenk, 1989; $2 = Schenk, 1991; Sh = Sharpton, 1994; Se = Sharpton et
al., 1994; PD = Pike and Davis, 1984; HP = Herrick and Phillips, 1994; CM = Chapman and McKinnon, 1986; W = Wood, 1980; PS = Pike and
Spudis, 1987; SH = Smith and Hartnell, 1978.

central peak ,I,M, ÷_ • •--"

÷ ÷ ÷ ÷ ÷ 4, ....... I, no central peak

b1 1 100

Diameter (km)

FiG. I. Raw data for the onset of central peaks for craters on Venus. Graph shows the diameters of craters with and without a central peak. The minimum
onset diameter is the diameter of the smallest crater with a central peak, or 8.6 km The maximum onset diameter is the diameter of the largest crater without

a central peak, or 22.6 km. The median onset diameter is where the number of craters below the median and with a central peak equals the number above the
median and without a central peak, or 14.8 km
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TABLE 2. Model parameters and their formal errors for inversions involving hydrostatic pressure.

Model value followed by standard deviation (in log space)
Model parameters A a B a C o D a E _r F st nlA nlA'

Log(A)
Rim-floor depth, D= 30 km 3.20 0.03 3.24 0.03 3.20 0.04 3.21 0.03 3.21 0.39 2.28 0.47

Terrain-floor depth, D = 30 km 2.16 0.05
d/Dinflection point 3.74 0.04 3.80 0.04 3.63 0.05 3.79 0.05 3.75 0.04 4.44 0.39 3.50 1.18

Central peak onset minimum 3.92 0.03 3.95 0.03 3.91 0.02 3.12 0.35 3.68 1.37
Median 4.15 0.03 4.14 0.03 4.13 0.05 4.12 0.05 4.12 0.03 3.32 0.35 3.92 1.60

Maximum 4.27 0.03 4.30 0.03 4.27 0.02 3.47 0.35 4.03 1.72

Peak ring onset minimum 4.75 0.02 4.67 0.03 4.67 0.03 4.97 0.40 4.59 2.22
Median 4.95 0.05 4.98 0.05 4.94 0.06 4.97 0.06 4.94 0.05 5.26 0.40 4.79 2.42
Maximum 4.96 0.04 4.90 0.04 4.81 2.43

Terracing onset minimum 4.13 0.02 3.95 1.59
Median 4.22 0.03 4.04 1.67

Maximum 4.45 0.04 4.27 1.91

Terracing onset minimum depth 3.11 0.03
Median 3.18 0.03

Maximum 3.26 0.03

b or ct (For models A - F, b is fixed and equal to 1.0 unless otherwise noted)

Depth of 30 km crater
d/D inflection point

Central peak onset
Peak ring onset

Terracing onset diameter
Log(c)

Venus 1.33 0.02 1,40 0.03

Mercury 1.18 0.02 1.11 0.03
Mars 0.77 0.03 0.76 0.04

Moon 1.00 0.00 1.00 0.00

Ganymede 0.01 0.04 -0.16 0.05
Rhea -0.31 0.09 -0.35 0.09
Ariel/Titania -0.34 0.05 -0.46 0.06

Dione -0.41 0.06 -0.43 0.06

Mimas -0.92 0.06 -0.94 0.06

1.43

1,12
0.97

1.00

b ct b b

0.7 (fixed) 0.04 0.29 0.67 0.02
--0.48 0.29 0.91 0.04

0.61 0.26 0.91 0.05

-0.18 0.29 0.94 0.05

0.93 0.05

0.05 1.44 0.06 1.40 0.03 1.37 0.04 1.28 -7.32

0.04 1.04 0.06 1.15 0.02 1.04 0.06 1.15 -3.00
0.06 0.81 0.08 0.81 0.03 0.78 0.04 0.68 -12.55

0.00 1.00 0.00 1.00 0.00 1,00 0.00 1.00 1.00
_0.10 0.08 -0.09 0.03 -0.13 0.06 -0.05 -9.81

-0.32 0.10 -0.31 0.09 -0.36 0.08 -0.32 -2.09
-0.28 0.10 -0.32 0.05 -0.37 0.09 -0.36 -2.58

-0.39 0.10 -0.40 0.06 -0.37 0.06 -0.43 -2.25
-0.90 0.11 -0.91 0.06 -0.87 0.06 _0.95 -4.01

points within 20 of the observed value, and 61 of 70 within 3_r. The

rms error (in log space) for the model output is 0.17 vs. 0.13 for the

actual data, so overall the inversion did not produce an acceptable fit

to the data. The worst fits of model to data occur for the onset of ter-

racing and the onset of central pits (treated as peak rings) on the icy

satellites. The majority of the terracing data is not fit within lcr, and

four of the fifteen data values are not fit within 3tr of the data. Of the

four data values for the onset of central pits on Ganymede and Titania,

only one was fit within acceptable error bars. These poor fits suggest

that the model we used, Eq. (13) with b fixed at !, was inappropriate

for these two data sets. It is encouraging that the model outputs for c,

the strength parameter, seem reasonable. The icy satellites as a group

have strengths an order of magnitude less than those for the terrestrial

planets. Mars, which may have water in the crust, has a relative

strength half that of the Moon. Mercury, which superficially appears

to most resemble the lunar highlands, has a value ofc that is 50% lar-

ger than the Moon's. Venus has a dry crust that may not be as highly

fractured as the lunar or Mercurian crust, and its calculated relative

strength is roughly double the Moon's. For the icy satellites, Ariel,

Rhea, Dione and Titania have strengths roughly half that of Gany-

mede's, and the strength of Mimas is about one-tenth that of Gany-
mede's.

There are many logical variations on this first model that can be

tested, and we summarize a few here. We ran another inversion iden-

tical to Model A, except it did not include the terracing data or the

central pit onset data. The results for this inversion, Model B in

Tables I and 2, were similar to those for Model A and indicate that

including the terracing and central pit data did not adversely affect
the rest of the inversion in Model A. The Model B results have a

slightly lower rms error than the data because the terracing and cen-

tral pit data were excluded, and all but three of the data points were

fit within 3or. For the test labeled Model C in Tables 1 and 2, we used

only data for the rocky planets and the following measurements:

rim-floor depth of a 30 km crater, the inflection point in the depth-

diameter curve, and the median onset diameters for central peaks and

peak rings. The input for Model C was a small subset of that for Mod-

el A, but the output results were remarkably similar, and the same

general trend in planetary strengths was found. Without the inclu-

sion of icy satellites, the rms error for the data was substantially lower

than the error for the data used in Model A. Thus, even though Mod-

el C had a lower rms model output error than Models A or B, the

model output does not have an rms error lower than the observed data.

All of the data were fit within 3or with Model C.

Recently McKinnon et al. (1997) stated that a g 0.7 trend was

more logical for the depth trend for a single diameter, and they also

preferred to use terrain-floor depth data rather than the rim-floor

depths that are commonly used. We ran a set of four tests where we

ran through the possible combinations of using terrain-floor depth vs.

rim-floor depth and forcing a (c/pg) 1 vs. (c/,og) 0.7 trend for the depths.
The measurements used for the inversions were depth of a 30 km cra-
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FIG. 2. Graphical representation of the data and model results for Model A in Tables I and 2. Data is shown as x's (horizontal lines for median peak ring
onset) with vertical lines representing la error bars. Model results are shown as diamonds (squares for median peak ring onset). Data and values are plotted
vs. target surface gravity. Data and results for Mars have been plotted at a slightly lower than actual surface gravity to allow the points to be distinguished
from the Mercurian data and results.

ter, the inflection point in the depth-diameter curve, and the median

onset diameters for central peaks and peak rings. These four inver-

sions all yielded similar results that were also consistent with Mod-

els A and B. Figure 3 compares, for all four inversions, the calculated

model trends vs. the depth data. The results for one of these, the one

using terrain-floor depths and forcing a (c/pg) 0"7 depth trend, are

shown as Model D in Tables 1 and 2. Negligible differences were

found between model fits using terrain-floor vs. rim-floor depths,

but the relative strengths of Venus, Mercury, and Mars were slightly

lower if terrain-floor depths were used. Almost identical model fits

were found between models using a (c/pg) 0'7 vs. a (c/pg) 1 trend, and

the primary model parameter that changed between these two models

was the constant A in Eq. (12) in response to the forced change in b.

We also performed several nonlinear inversions similar to mod-

els A-D but allowing b to be a variable for each measurement type.

For the nonlinear inversions, an initial estimate of model parameters

must be given as a starting point for the inversion, and damping of

individual steps may be important. The nonlinear inversion can be

thought of as starting at a specified point on a surface of model solu-

tion errors and using local slopes to end up in a local minimum that

minimizes error. Ideally there is only one local minimum that is the

absolute minimum, and that minimum is reached from any starting

point. Unfortunately, as we discuss below, that is not the case for the

inversions performed here. A judicious choice of the damping factor

will get the inversion to a local minimum in a few steps without over-

shooting that minimum. We found that the most effective technique

was to start with minimal damping and automatically increase damp-

ing as necessary to ensure that each step produced a model output with

a lower error than the previous step. We ceased iterating when the av-

erage step became less than 5 x 10 -4 the average model parameter.

Model nlA in Tables 1 and 2 shows the results for a nonlinear

inversion that used the results of linear Model A as a starting set of

parameters. We allowed b to vary, but required b to be the same for

the minimum, maximum, and median of each measurement type.

Thus, Models A and nlA are fitting the same data, but Model nlA is

nonlinear and has five additional parameters (the b's). This particu-

lar inversion converged to a minimum error solution with fairly minor

changes in the model parameters from the starting values. In particu-

lar, the calculated b values stayed near 1.0 except for the 30 km

crater depths, which inverted for a slope of 0.69. This would seem

to validate the linear dependence on c/pg except for the (c/pg) °7 de-

pendence on depth suggested by McKinnon et aL (1997). However,
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there was less than a percent difference in data error between the out-

puts of the linear and nonlinear models. In other words, allowing b

to vary essentially gained nothing in terms of the overall model being
able to fit the data.

We also found that the solution set of model parameters is non-

unique. Model nlA' in Tables 1 and 2 shows the results from an in-

version with a different set of starting parameters. In this case, the

solution evolved to a set of functions with nearly fiat slopes (b - 0)
and still achieved the same fit of model results to observed data. Two

characteristics of the observed data account for the nonuniqueness of

inversion results. First, when plotted on a log-log graph of measure-

ment value vs. surface gravity, most of the observed data sets are

roughly parallel. Proportionality constants (the A's) can be solved for

that have the effect of collapsing several data sets into one line. Sec-

ond, we expect the strengths of the planetary bodies to have roughly

the same trend as the gravity. The rocky planets have higher surface

strengths and higher surface gravities than the icy satellites. There-

fore, higher or lower slopes (the b's) can be counteracted by less or

more dramatic strength variations. Additional nonlinear inversions

were performed corresponding to the data sets used for some of the

other linear inversions, and results were similar to those obtained in

Models nlA and nlA'.

F tests showed that in no case was the model error reduced by

using the nonlinear inversions more than could be attributed to simply

adding parameters to the model. In other words, a simple linear de-

pendence on the factor c/pg works pretty well at matching most of

the data we used except for the onset of terracing data. While the

nonlinear inversion results were not an improvement over the linear

model, they also showed that a linear dependence is not the only ac-

ceptable model for fitting the data.

Model A shows that terracing onset data do not reasonably fit a

c/pg dependence. Some previous works (e.g., Pike, 1980b; Herrick

and Phillips, 1994) have suggested that the poor fit for terracing on-

set might be because terracing is a late-stage process that occurs after

final crater depth has largely been determined. To test this idea in a

primitive way, we assume that the complex crater depth d, rather than

diameter, for the onset of terracing is dependent on the factor c/pg.

We performed another inversion with Model A modified by sub-

stituting crater depth for crater diameter in the data for onset of ter-

racing. These results are shown as Model E in Tables 1 and 2. The

reduction in error is dramatic. For Model E, 58 of 70 model param-
eters are fit within 20 and 66 of 70 are fit within 3_r. Overall the

rms model error is < 10% greater than the rms data error. Thus, our

inversion results support the hypothesis that terracing occurs when

final crater depth exceeds a constant multiple ofc/pg.

ACOUSTIC FLUIDIZATION

A more specific model of complex crater formation that has been

proposed is the acoustic fluidization model of Melosh (1982). The

basic premise of the acoustic fluidization model is that a hemispheri-

cal region containing the transient cavity becomes fluidized by

acoustic noise. The fluidized material behaves as a Bingham plastic, a

material that behaves as a solid below a yield stress c but flows as a

fluid when differential stresses exceed this strength. Melosh (1982)

assumes a fixed viscosity r/for the fluidized material, which then be-

haves as a damped, oscillating wave that freezes when stresses fall

below c. The shape of the wave when it freezes determines whether

the crater has a central peak, a peak ring, or multiple rings. Initial col-

lapse occurs if

pgH/c -> 5 Eq. (15)

where H is the depth of the transient cavity, and collapse becomes

deep-seated if the inequality is >8 to 15. Melosh (1982) assumes a

depth/diameter ratio of 1:5 for the transient cavity, so collapse oc-
curs when

pgD/c >- 25 Eq. (16)

The break in the depth-diameter function is considered by Melosh

(1982) to be the best estimate of when collapse occurs, so the diam-

eters of these breaks and Eq. (16) as an equality can be used to

invert for c. When collapse is deep-seated, the final depth d of the

crater should be a constant independent of diameter but determined

by e/pg so that

d = Kc/pg Eq. (17)

where K is a constant that should be between 8 and 15. We can use

the depth of a 30 km diameter crater and Eq. (17) to invert for K and

c. Through a series of approximations, Melosh (1982) determines that

the number of zero crossings that occur in the oscillating wave is,
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TABLE 3. Results from acoustic fluidization inversions.

Approach 1 Approach 2 App. 1 App. 2
data as log (m) data as In (m) (log) (In)

Data error Results Data error Results Parameters

d/D inflection point Yield stress (Pa)

Mercury 3.67 0.06 3.73 8.45 0.06 33.60 Venus 6.53 26.20

Mars 3.49 0.09 3.62 8.04 0.09 34.10 Mercury. 6.37 25.20
Moon 4.04 0.08 3.97 9.30 0.08 35.00 Mars 6.26 26.00

Ganymede 3.68 0.10 3.57 8.48 0.10 23.60 moon 6.24 25.70

Rhea 4.09 0.11 4.05 9.43 0.11 14.90 Ganymede 5.33 15.10
Ariel 4.23 0.10 4.19 9.74 0.10 11.70 Rhea 5.10 5.45

Dione 4.24 0.17 4.17 9.77 0.17 14.60 Ariel 5.19 1.96

Mimas 4.20 0.32 4.13 9.68 0.32 21.20 Dione 5.12 4.87

Depth of a 30 km crater Mimas 4.63 11.50

Venus 3.05 0.14 3.05 7.01 0.14 Viscosity (Pa s)

Mercury 3.28 0.04 3.25 7.54 0.04 Venus 9.34 1. I × 104

Mars 3.22 0.07 3.15 7.42 0.07 Mercury 9.17 9.5x103

Moon 3.47 0.05 3.49 7.98 0.05 Mars 8.37 3.2×103

Ganymede 2.99 0.09 3.09 6.88 0.09 moon 9.56 1.4×104

Rhea 3.40 0.20 3.57 7.84 0.20 Ganymede 7.86 8.3×10"-

Ariel 3.28 0.34 3.72 7.55 0.34 Rhea 7.14 8.6×101

Dione 3.40 0.35 3.70 7.84 0.35 Ariel 7.63 8.0×10 I

Mimas 3.52 0.45 3.66 8.11 0.45 Dione 7.28 1.5×102

Median central peak onset N N for cent. Mimas 6.67 9.3× 101
.00 0.15 K 0.92 -9.02Venus 4.17 0.03 4.28

Mercury 4.18 0.06 4.44

Mars 3.78 0.10 4.45

Moon 4.43 0.07 4._ 1

Ganymede 3.70 0.10 4.42
Rhea 4.18 0.15 4.18

Ariel 4.18 0.15 4.18

Dione 4.30 0.11 4.30

Mimas 4.30 0.10 4.30

Median peak ring onset
Venus 4.82 0.08 4.23

Mercury 5.04 0.l 1 4.23
Mars 5.08 0.14 3.68

Moon 5.34 0.10 4.61

Ganymede 4.60 0.10 3.88
rms error: data 0.17

rms error: model 0.43

.00 0.30

.00 0.59

.00 0.35

.00 0.62

.00 0.90

.00 0.90

.00 0.59

.00 0.52

N N for peak

4.00 0.71

4.00 1.06

4.00 1.52

4.00 0.97

4.00 1.00

10.20

8.60

9.58

8.75

-0.78

-11.40

-14.60

-12.00

-5.61

peak onset
7.7× 10 2

4.1 × 10 3

-0.48

0.17

-2.68

1.11

-0.16

2.09

-1.96

ring onset

7.50

77.40

51.90

36.00

50.00

0.56

21.83

See Table 1 for appropriate references for data values.

N=_rL4_ " r/2 ) J 2J-3 c
Eq. (18)

where L is the radius of the fluidized region and a is the radius of

the transient cavity. We use Melosh's (1982) assumptions that L is

the also the radius of the final crater and that it is equal to 1.5 a.

Equation (18) becomes

A"=;L ---r--

k 1 = 3g°_____2
Eq. (19)

32

2pg

k2 - 45,f3

For a given planet, N = 1 at the onset diameter of central peaks and

N = 2 at the onset diameter of peak rings.

We would like to use our measurements and Eqs. (16), (17), and

(19) to invert for each planet's viscosity (in Pa s) and yield stress (in

Pa). However, Eq, (19) is not in the form required by Eq. (I) with

data and parameters separated. It is impossible to isolate the data

values of the onset diameters D in Eq. (19) from the model param-

eters. We tried two approaches to getting around this problem. In

the first approach, we held one of the two terms in Eq. (19) fixed dur-

ing each inversion step and then recalculated that term between steps.

We chose to hold the second term fixed so that for each step we could

define a third constant

I 1N_

k3 = In(k2 D/c) + 1 Eq. (20)

so that now Eq. (19) can be rewritten as

D 3 = k3rl2/kl Eq. (21)

or in log-log space

logD= l(logk3 + 2 Iogr/- logk I ) Eq. (22)
3
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In summary, for the first approach we used log-log versions of Eqs.

(16) and (17) along with Eq. (22) to invert depth-diameter transitions,

depth data, central peak onsets, and peak ring onsets for the yield

stress and viscosity parameters. The inversion has 31 observations

to invert for 19 parameters.

In the inversion, k 3 must be calculated before each step, and this

value depends on the value of D used. We ran two inversions, one

where the observed diameters were used and the other where D is cal-

culated from Eq. (22) using parameters and model results from the

previous iteration. There were no significant differences in the results

from either approach, and Table 3 summarizes the results where the

observed diameters were used to calculate k 3. The inversion was un-

satisfactory in that no set of model parameters was able to success-

fully match the data within the data error bars. When taken back

out of log space, the data has an rms error of-50% while the model

produces errors of-170%, or the model results are typically a factor

of 2.7 greater or less than the observed data. The principal failure of

the model is that no viscosity values could be found so that the

model could match both central peak onsets and peak ring onsets. Ex-

amination of Eq. (18) shows that to first order, the model predicts that

the ratio of onset diameters for peak rings vs. central peaks should

be 22/3, or -1.6, while observed ratios range from about 4 to 20.

Consequently, the best the model can do is choose viscosity values

that produce onset diameters intermediate between the observed val-

ues for central peaks and peak rings.

In the second approach, we used Eq. (18) directly with N instead

of D as the data value we were solving for. We squared Eq. (18) to
stabilize the inversion. The data values D were treated as constants

in the inversion, but the percent error in D was used as the percent

error in N 2. Because Eq. (18) involves a natural log term, we used

In-In versions of Eqs. (16) and (17) to invert the depth-diameter

transitions and depth data. As the results in Table 3 show, this sec-

ond approach was even less successful than the first approach. In the

first approach, the yield stresses c were calculated independently of

r/and were not affected by the problem with the ratio between onset

diameters for central peaks and peak rings. In the second approach,

the only way the inversion could produce a large difference in N

with small differences in D was to choose large strength values that

made the natural log term in Eq. (19) at or below zero where the

natural log function is rapidly varying.

Melosh (1982) obtained a fit of model to data by allowing the

viscosity to be different for central peak onset and peak ring onset.

In this case, the inversion is exactly determined so that the viability

of the model must be evaluated by some other means than the mod-

el's ability to fit the data. A discussion of the physical viability and

the geologic evidence for acoustic fluidization in a crater is beyond

the scope of this paper. It is interesting to note that the basic mathe-

matics in the acoustic fluidization model should be appropriate for

any conceptual model of complex crater formation that involves Bing-

ham fluid collapse of a hemispherical shell of material. Any such

model must have the property of either decreasing L relative to a with

increasing crater diameter or increasing r/with increasing diameter.

This would seem to rule out collapse with the hemispherical cavity

defined by exposure to a specified shock pressure, as that would pre-

dict L increasing relative to a (e.g., Melosh, 1989).

NONPROPORTIONAL GROWTH AND IMPACT

VELOCITY EFFECTS

Some authors have advocated that the onset and formation of cer-

tain properties of complex craters are a result of nonproportional

growth or a change in the shape of the excavation cavity with in-

creasing crater diameter. In particular, Schultz (1988) has used ex-

trapolation of small-scale impact experiments to argue for shallowing

of transient crater diameter above a crater diameter dependent on

vHT/g, where v is impactor velocity. He estimates that both the

depth-diameter transition and the onset of peak rings should be pro-

portional to the same parameters, so that

117 (" "_0.22_ 2_0.83F . .0.5 q-0.83

,,2v tp'/ /s,/ l,+f""/ /
L _1 Eq.(23)

where s is sound speed, the subscripts t and p denote target and pro-

jectile, and the subscripts 1,2 indicate the equations for depth-diam-

eter transition and peak ring onset, respectively. Schultz (1988) also

includes an equation for peak ring diameter relative to crater diam-

eter, but the predicted and observed interplanetary variations are less

than the error bars on the data, so we did not use that data in our

inversion. For a given planet, we expect that the highest impact velo-

cities will generally be associated with cometary impactors that we

expect to have relatively low densities and sound velocities. We

can carry this logic into the inversion by associating the maximum

possible impact velocity with the diameter of the largest crater with-

out a peak ring, the minimum possible impact velocity with the diam-

eter of the smallest crater with a peak ring, and the median impact

velocity with the median onset diameter of peak rings and the depth-
diameter transition.

For the inversion, we estimated all parameters in Eq. (23) except

for k 1,2 and inverted for these two constants in log-log space. For the

Moon, Mercury, and Mars, we assumed a target density of 2900 kg

m -3 and sound speed of 3 km/s; for Venus, we assumed a target den-

sity of 2900 kg m-3 and sound speed of 4.5 krn/s; and for the icy

satellites, we assigned a target density of 1000 kg m -3 and sound

speed of 1.6 km/s. For the terrestrial planets, we assumed that the

minimum and median velocity impactors were stony asteroids and

assigned them a density of 2500 kg m -3 and sound speed of 3 km/s,

and the maximum velocity impactors were assumed to be cometary

and were assigned a density of 1000 kg m-3 and sound speed of 1

km/s. For the icy satellites, all impactors were assumed to be come-

tary.

Table 4 shows the impactor velocities used in the inversion, the

constants k 1,2 resulting from the inversion, and the model results com-

pared to the data. The minimum impactor velocity is simply the es-

cape velocity of the target body. The maximum impactor velocity is

also calculated theoretically using the orbital and escape velocities

of the sun and the pertinent planets and moons. Median impactor

velocities for the inner planets are from Schultz (1988); and for

Ganymede, the Shoemaker and Wolfe (1982) value for short-period

comets is used. For the remainder of the icy satellites, we use as a

median velocity the simple approximation of r_ times the orbital

velocity of the planet orbited by the satellite. This approximation

assumes an impacting population of long-period comets and ignores

the minor acceleration provided by the gravity wells of the planet

and satellite. All of the velocity values used are speculative, but the

general trend they define should be accurate. Other than approxi-

mately defining the general trend by virtue of the inverse gravity

term in Eq. (23), the model results simply do not match the data. The

rms model error of 0.65 corresponds to the model results typically

being a factor of 4.5 greater or less than the data.
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TABLE4.Resultsfromnonproportionalgrowthinversions.
Densityandvelocityparametersusedininversion

Impactorvelocitiesandcorrespondingimpactordensityandsoundspeed Targetdensity
andsoundspeed

Min.v pp Sp Med. v pp Sp Max. v pp sp fit st
ktrds kgm 3 km/s km/s kgm -3 km/s km/s kgm 3 km/s kgm 3 kn_s

Venus 10.4 2500 3 27 2500 3 86 1000 1 2900 4.5

Mercury 4.3 2500 3 34 2500 3 2900 3.0
Mars 5.0 2500 3 16 2500 3 2900 3.0
moon 2.5 2500 3 22 2500 3 2900 3.0

Ganymede 2.7 1000 I 16 1000 I 48 1000 I 1000 1.6
Rhea 17 1000 1 1000 1.6

Ariel 12 1000 1 1000 1.6
Dione 17 1000 1 1000 1.6

Mimas 17 1000 1 1000 1.6
Titania 0.8 1000 1 1000 1.6

Data and inversion results expressed as log (km)
Data Error Results Data Error Results

d/D inflection point Peak ring: median onset
Mercury 0_67 0.06 0.70 Venus
Mars 0.49 0.09 0.32 Mercury
Moon 1.04 0.08 0.85 Mars

Ganymede 0.68 0.10 0.66 Moon

Rhea 1.09 0.11 1.39 Ganymede
Ariel 1.23 0.10 1.26 Peak ring: maximum onset
Dione 1.24 0.17 1.49 Venus

Mimas 1.20 0_32 1.94 Ganymede

Peak ring: minimum onset rms data error

Venus 1.65 0.00 1.65 rms model error
Mercury 1.86 0.08 0.82
Mars 1.65 0.10 0.91 Parameters
Moon 2.13 0.11 0.91 l°g(k0

Ganymede 1.34 0.10 1.39 l°g(k2)
Titania 2.13 0.10 1.34

1.82 0.08 2.13
2.04 0. I 1 1.87

2.08 0.14 1.50
2.34 0.10 2.02

1.60 0.10 2.28

1.88 0.03 3.27
1.72 0.10 2.84

0.12

0.65

-3.69
-2.06

We also tried a model that tested a more general dependence on

impact velocity. We modified the linear form of Eq. (12) to allow for

a possible exponential dependence on velocity, or

Oil = Ai cj v7 _ Eq. (24)
P)gj

where a is an unknown exponential. In log-log space, this expres-

sion becomes

(logO).# = (IogA)i +(logc)i -(logpg)j +cti(logv). i Eq. (25)

which is still linear if we assume we know the impact velocities. We
ran an inversion with the same data set as Model B but with addi-

tional parameters defined by the last term in Eq. (25). We used only

median impact velocities and had a separate ct for depth of a 30 km

crater, the d/D inflection point, onset of central peaks, and onset of

peak rings. The same a was used for the minimum, median, and maxi-

mum onset diameters, so a total of four parameters were added to the
inversion of Model B.

Our initial inversion was unstable. We decided to perform another

inversion with some minimal weighting given to an a priori estimate

to stabilize the solution. For a priori estimates, we used the model

parameter results of Model B and varied the a values from 0 to 2.

We found that providing a uniform weighting of the a priori esti-

mate of -0.1% was all that was necessary to stabilize the solution,

and the model results using an a priori estimate had an rms error with-

in 3% of the unconstrained inversion. Model F in Tables I and 2

shows the results with an a priori estimate of 1.0 for the a values.

In our solutions, only the ct value for onset of central peaks consis-

tently had an absolute value significantly different from zero, and an

F test comparison between Models F and B indicates that the

reduction in error from Model B to Model F is not statistically

significant. We conclude that there is no evidence for an impact velo-

city dependence for the measurements used in Models B and F, at

least not in the form of Eq. (25). We emphasize that our results do

not imply that varying impact velocity has no effect on the volume

of the excavation cavity but merely support the notion that the shape

of the excavation cavity is velocity-independent. The observables we

used in our inversions are for craters formed by hypervelocity im-

pacts in the gravity-dominated regime, and, thus, our results do not

apply to differences between subsonic and hypervelocity impacts or

to craters formed in the strength-dominated regime.

DISCUSSION

We have inverted crater morphometry data to test general and spe-

cific models for complex crater formation. A general dependence on

hydrostatic pressure vs. strength, or the factor c/og, works remarkably

well for most of the data. The trend in planetary crustal strengths that

is inferred from the inversions is consistent with our expectations: Ve-
nus has the highest crustal strength, Mercury and the Moon have
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FIG, 4, Similar to Fig. 2 but using model results from Model E in Tables 1 and 2.

slightly lower strengths because of a more fractured crust, Mars has

a still lower strength perhaps because of water in the crust, and the icy

satellites are an order of magnitude weaker than the terrestrial planets.

The acoustic fluidization model of Melosh (1982) did not fit the data

unless the number of model variables was increased until the model

was even determined; for even determined models, the fit of model

to data is guaranteed and is not an indicator of the model's validity.

The nonproportional growth formulation of Schultz (1988) did not fit

the data, and no dependence on impact velocity in general was found.

A dependence on the factor c/pg does not reproduce all of the

data. The diameter onset of terracing does not follow a c/pg trend but

the depth onset of terracing does (Model A vs. Model E). This may

indicate that terracing is a late-stage process that occurs after the final

depth of the crater has been determined, an idea first suggested by

Pike (1980b) using only data from Mars, the Moon, and Mercury.

While the central pit onset data did not seem to fit the peak ring onset

data trend in Model A, in Model E the slight change in relative crustal

strengths results in three of four model results Ibr central pit onset

falling within error bars for the data. Figure 4 shows graphically the

model results vs. data tbr model E. Perhaps what stands out most in

Fig. 4 is that Mars consistently does not fall on the trend produced

by the other planets. This may indicate that there is something unique

about the modification stage of complex crater formation on Mars,

perhaps as a result of significant portions of both rock and water ice
in the crust.
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It is difficult to determine exactly what is unique about Mars be-

cause we don't really understand why a dependence on c/pg fits the

data so well. While a dependence on hydrostatic pressure may seem

to make sense for the initial collapse, the final crater depth, and the

depth onset of terracing, there is no obvious reason why the trend

applies to peak ring onset. Furthermore, why collapse occurs at all is

somewhat puzzling, as interior slopes in simple craters are generally

below the angle of repose (Melosh, 1977). Our results from the non-

linear models further complicate the issue by indicating that the depen-

dence on c/pg need not be linear; exaggerating or minimizing strength

differences can offset a lower or higher exponential dependence on

c/pg. However, because the trends are all roughly parallel in log-log

space, values ofb are required to be roughly similar for all the mea-

surement types, perhaps within -+0.5.

It is perhaps indicative of how little is really understood about

complex crater formation that very few models in the literature make

quantitative testable predictions of interplanetary variations in crater

shape, and those few do not fit the data. Our inversions confirm the

long held qualitative belief that hydrostatic pressure vs. crustal

strength is important in complex crater formation and in fact seem

to indicate that c/pg is the dominant factor. A quantitative physical

model that explains in detail this apparent importance has yet to be

developed. The general inversion techniques we present can be used

as powerful tools for testing future models.
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